

Omics and AI driven radiotherapy approaches in H&N cancers

Vincent GREGOIRE, MD, PhD, Hon. FRCR (IE, UK) Centre Léon Bérard, Lyon, France

The Truth is rarely pure and never simple ...

Oscar Wilde

The challenges for 2022 and beyond

- Automatic primary tumor GTV and nodal CTV delineation
- Omics profile as prognostic factor
- Omics profile to change the treatment intensity

AI-based software to improve target and OAR volume delineation?

Plan preparation Multi-modal, multi-organ or

segmentation through Unique combination of Deep and transfe learning

Auto-identify organs at risks and tumors in patients anatomy in a few minutes with medical accuracy

Dose Optimization:

Unique combination of parallel multi-objective Master-Slave optimization & reinforcement earning

Produce the best possible treatment plan in minutes instead of hours /days, protecting 30% more organs at risk "A system's ability to correctly <u>interpret</u> external data, to <u>learn</u> from such data, and to use those learnings to <u>achieve</u> specific goals and tasks through flexible <u>adaptation</u>"

AI for OAR delineation

Mean saved time in comparison to MonacoSim

Automatic AI-based GTV delineation

Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation

Jintao Ren^{a,b,c} (), Jesper Grau Eriksen^{a,d} (), Jasper Nijkamp^{a,b*} () and Stine Sofia Korreman^{a,b,c*} ()

^aDepartment of Clinical Medicine, Aarhus University, Aarhus, Denmark; ^bDanish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; ^cDepartment of Oncology, Aarhus University Hospital, Aarhus, Denmark; ^dDepartment of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark

- 153 patients with pharyngo-laryngeal SCC
- 60% T1-T2; 75% N⁺
- CT, coronal MRI-T1, axial MRI-T2, mDixon MRI, FDG-PET acquired with an immobilization mask

Automatic AI-based GTV delineation

Automatic AI-based GTV delineation

Gemelli October 2022

Ren et al, Acta Oncol, 2021

DE LUTTE LEON

BERARD

Endoscopic Contouring

Weersink et al Med. Phys 38 6458, 2011

Weersink, US Patent: 9,138,597

Automatic nodal target volume delineation

The challenges for 2022 and beyond

- Automatic primary tumor GTV and nodal CTV delineation
- Omics profile as prognostic factor
- Omics profile to change the treatment intensity

Genomics profile as prognostic factor: the HPV status

Fig. 2. Cluster diagram of 91 genes that are differentially expressed between HPV⁺ and HPV⁻ HNSCC tumors. HPV⁺ tumors form a separate cluster (right).

Genomics profile as prognostic factor: HNSCC gene expression

- <u>Group 1</u>: EGFR-pathway signature
- <u>Group2</u>: mesenchymalenriched signature
- <u>Group 3</u>: normal epithelium-like subtype
- <u>Group 4</u>: high level of antioxidant subtype

Genomics profile as prognostic factor: HNSCC gene expression

- <u>Group 1</u>: EGFR-pathway signature
- <u>Group2</u>: mesenchymalenriched signature
- <u>Group 3</u>: normal epitheliumlike subtype
- <u>Group 4</u>: high level of antioxidant subtype

Radiomics for treatment individualization

Gemelli October 2022

Yip, PMB, 2016

Radiomics for treatment individualization

- 1019 patients
- \approx 100 stable imaging features

RadioGenomics for treatment individualization

- 206 HNSCC patients treated by chemo-radiotherapy
- \approx 446 imaging features (e.g. intensity, texture, morphology)
- Four molecular subtypes

The challenges for 2022 and beyond

- Automatic primary tumor GTV and nodal CTV delineation
- Omics profile as prognostic factor
- Omics profile to change the treatment intensity

Treatment de-intensification in HPV⁺ H&N SCC RTOG 1016: p16⁺ stage III-IV oropharyngeal SCC RT-cddp >< RT-cetuximab

Nimorazole as hypoxic sensitizer

Hypoxic gene signature

Gemelli October 2022

Toustrup K et al. Cancer Res 2011

Fifteen hypoxic gene signature in HNSCC

BERARD Toustrup K, Radiother Oncol, 2012

DE LUTTE LEON

Hypoxic gene signature and nimorazole in HNSCC

Toustrup K, Radiother Oncol, 2012

Accelerated chemo-radiotherapy with or without nimorazole for p16-negative HNSCC: the randomized DAHANCA 29 - EORTC 1219 study.

<u>V. Grégoire</u>, Y. Tao, J. Kaanders, J.P. Machiels, N. Vulquin, S. Nuyts, C. Fortpied, H. Lmalem S. Marréaud, J. Overgaard

Radiation Oncology Dept., Centre Léon Bérard, Lyon, France

EORTC-1219 Dahanca: study design

Blinded & randomized trial; 640 patients (200 patients in the positive hypoxic gene profile)

Primary endpoint: loco-regional control

Loco-regional control & hypoxic gene signature effect

Summary

- AI-based automation and homogenization of OAR and TV selection and delineation
- Need of redefining the role of the Radiation Oncologist...
- Various prognostic omics signature
- No demonstration yet of omics-based treatment intensity modification

Experience is simply the name we give to our mistakes.

Oscar Wilde

